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Abstract In this work, we propose an optimization framework for designing under
uncertainty that considers both robustness and reliability issues. This approach is
generic enough to be applicable to engineering design problems involving nonconvex
objective and constraint functions defined in terms of random variables that follow
any distribution. The problem formulation employs an Inverse Reliability Strategy
that uses percentile performance to address both robustness objectives and reliability
constraints. Robustness is achieved through a design objective that evaluates perfor-
mance variation as a percentile difference between the right and left trails of the spec-
ified goals. Reliability requirements are formulated as Inverse Reliability constraints
that are based on equivalent percentile performance levels. The general proposed
approach first approximates the formulated problem via a Gaussian Kriging model.
This is then used to evaluate the percentile performance characteristics of the differ-
ent measures inherent in the problem formulation for various design variable settings
via a Most Probable Point of Inverse Reliability search algorithm. By using these
percentile evaluations in concert with the response surface methodology, a polyno-
mial programming approximation is generated. The resulting problem formulation is
finally solved to global optimality using the Reformulation–Linearization Technique
(RLT) approach. We demonstrate this overall proposed approach by applying it to
solve the problem of reducing piston slap, an undesirable engine noise due to the
secondary motion of a piston within a cylinder.
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1 Introduction

Many engineering analyses involve optimizing a nonconvex objective function over
a design space that is restricted by a set of constraints defined in terms of nonconvex
functions. An application of standard nonlinear optimization methods to such a prob-
lem can at best attain a local solution that need not be a global optimum. In addition,
the application of deterministic approaches to design does not consider the impact
of uncertainties. The resulting design solution may either be too sensitive to system
variations causing a loss of system performance, or be unreliable and violate criti-
cal design constraints. In contrast, robust design and probabilistic or reliability-based
design represent two major paradigms for designing under uncertainty. Robust design
focuses on improving the quality of the product by minimizing the effect of variation
without eliminating the causes. On the other hand, probabilistic or reliability-based
design focuses on maintaining design feasibility with respect to system performance
measures at specified probabilistic levels.

More specifically, a typical problem of designing under uncertainty within the para-
digm of probabilistic or reliability based design optimization can be stated as follows:

Minimize vGobj ≡ f (x, y, P)

subject to Prob[Gi (x, y, P) ≤ 0] ≥ αi, ∀i = 1, . . . , m
(νx, y) ∈ Z

(1)

where, x is the vector of random design variables, or control factors, as governed by
the vector of distribution parameters, vx, which might include the mean, the standard
deviation, etc.; y is the vector of deterministic design variables; P is the vector of
random design parameters or noise factors, which is governed by the vector νP of its
specified distribution parameters; Gobj is the actual underlying objective function (as
a function of x, y, and P), which is generally a random variable; vGobj is a probabilistic
characteristic of the objective function, e.g., its mean or standard deviation, or some
combination of these measures; in robust design, robustness is usually achieved via
an objective that simultaneously attempts to optimize the mean performance and
minimize the performance variation. f is the design objective, which describes the
probabilistic characteristic vGobj of the objective function Gobj; Prob[·] denotes prob-
ability of [·]; Gi, ∀i are probabilistic constraint functions of x, y, and P; αi, ∀i are the
desired probabilities of constraint satisfaction; Z is a constraining set that controls the
feasible values of νx and y, typically containing lower-upper bounding (and sometimes
integrality) restrictions.

Here, {vx, y} are jointly considered as design variables, and represent the prin-
cipal decision variables that control the final design outcome. Also, note that if
Gα

i (x, y, P) denotes the α-percentile level of the probabilistic function Gi (x, y, P),
i.e., Prob[ Gi (x, y, P) ≤ Gα

i (x, y, P)] = α as governed by some underlying probability
density function of Gi (x, y, P), then conceptually, we can equivalently state (1) as the
restriction

Gαi
i (x, y, P) ≤ 0, ∀i = 1, . . . , m. (2)
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In this work, we adopt an approach that integrates robustness and reliability con-
siderations within a model of the type (1) via the Inverse Reliability Strategy (see Du
et al. 2004), and we investigate the composition of various modeling, approximation,
and global optimization techniques towards developing an optimization framework
for designing under uncertainty. We then apply this approach to the problem of min-
imizing piston slap, an undesirable engine noise due to the secondary motion of a
piston within a cylinder.

The motivation and specific contributions of this work are threefold. The first is
to provide a pedagogical description of the Inverse Reliability strategy for modeling
probabilistic design optimization problems of the type (1), along with a discussion of
various analytical tools that can be utilized to characterize the objective and constraint
functions. Second, we propose a new overall framework for designing under uncer-
tainty that composes these diverse tools in order to transform the probabilistic design
problem into a nonconvex mathematical program, and then coordinates this with a
suitable global optimization technique. Third, as an illustration of this approach, we
apply it to solve the aforementioned piston slap problem, which was posed to us by
Ford Motor Company. Overall, we hope that this exposition will stimulate the global
optimization community to explore alternative approaches to solve such probabilistic
design problems to (near-) global optimality, a feature that has been lacking in the
literature and deserves more attention than has been forthcoming.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the Inverse Reliability strategy, and Section 3 outlines the Most Probable Point
concept for evaluating the percentile performance characteristics for the objective
and constraint functions. Section 4 briefly discusses certain relevant approximation
methods commonly employed in engineering design. The foregoing sections therefore
provide a concise tutorial on the basic concepts that constitute the elements of our
proposed overall approach. As an illustrative application analyzed herein, Section 5
describes the robust piston design problem or the piston slap problem in automobile
engine design. Section 6 then delineates the proposed optimization framework for
designing under uncertainty, and presents computational results pertaining to apply-
ing this approach to solve the piston slap problem. Section 7 concludes the paper with
some comments and recommendations for future research.

2 The Inverse Reliability Strategy for design optimization under uncertainty

The Inverse Reliability Strategy uses percentile performance to assess both robust-
ness objectives and reliability constraints. Robustness is achieved through a design
objective that evaluates performance variation as a percentile difference between
the right and left trails of the specified goals. Reliability requirements are formu-
lated as inverse reliability constraints that are predicated on equivalent percentile
levels. This reformulation of the traditional probabilistic optimization formulation is
motivated by the need to facilitate more computationally efficient techniques, and to
provide a more accurate assessment of performance dispersion from the viewpoint of
improving the system robustness. The resulting formulation represents a multicriteria
optimization problem where a trade-off needs to be made between optimizing the
mean performance and minimizing the performance variation, subject to probabi-
listic chance-constraints. Usually, the multiple objectives are combined into a single
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objective function by using some suitable normalized weighting factors, as we shall
later illustrate in Section 5 when addressing the piston slap problem.

In conventional reliability analysis, the focus is on determining if the probability
of some system performance measure is greater than, or less than, a specified level.
In Inverse Reliability or percentile formulations, the focus is on designing a system
that yields such a specified reliability performance. Du et al. (2004) provide a detailed
derivation of the Inverse Reliability formulation. Such a percentile formulation has
several advantages:

(i) It represents probability at the tail-areas of the system performance distribution
and, hence, carries more information than the standard deviation. For example,
the percentile performance captures the skewness of the distribution, whereas
the standard deviation captures only the dispersion around the mean value.

(ii) It naturally provides the confidence level with which the design robustness is
achieved.

(iii) Computationally efficient solution procedures can be derived based on using
such percentile representations for both the robustness objective and the prob-
abilistic constraints.

The Inverse Reliability formulation can be stated as the following multiple objective
program, in its generic form:

IR Minimize
{

μGobj (x, y, P) , �Gobj (x, y, P)α2
α1

}

subject to Gαi
i (x, y, P) ≤ 0, ∀i = 1, . . . , m

(νx, y) ∈ Z

(3)

where μGobj (x, y, P) represents the mean of Gobj (x, y, P), and where �Gobj (x, y, P)α2
α1

≡ Gα2
obj(x, y, P) − Gα1

obj (x, y, P) represents the difference in the percentile values at
the probability levels α2 and α1. Here again, {vx, y} are the design variables, where the
distribution parameter vector νx controls the random design variable vector x, and all
other notation is as described above.

As an alternative to the objective function given in (3), for a smaller-the-bet-
ter type of robust design, the objective function could be formulated as: Minimize
Gα

obj (x, y, P), where α is a large probability, for example, 0.95 or 0.99. The percentile
value at the right-tail of the distribution of Gobj (x, y, P) is to be minimized in this
case. Symmetrically, for a larger-the-better type of robust design, the design objective
could be formulated as: Maximize Gα

obj (x, y, P), where α is a small probability, for
example, 0.05 or 0.01, and where the intent is to maximize the percentile value at the
left-tail of the distribution of Gobj (x, y, P).

The key requirement for being able to solve Problem IR defined in (3) is to have
an analytical facility to evaluate the defining percentile values in the objective and
constraint functions, for any specified probability level, given the distribution char-
acteristics (vx, y, vp), and assuming some underlying probability distribution. This is
addressed in the following section.

3 Most probable point of inverse reliability

One of the challenges in using probabilistic design models is to capture the effect of
uncertainty on a system response, given the probability distributions of the random
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input variables. Several approaches have been adopted for such uncertainty analyses.
Some of the more commonly employed methods are outlined here.

Sensitivity-based approximation procedures include the worst-case analysis and the
moment matching method (see Eggert 1991; Parkinson et al. 1993; Du and Chen 2000,
2002). In the worst-case analysis, all fluctuations are assumed to occur in the worst
possible combination and the Taylor series expansion (or an optimization subprob-
lem) is used to compute the worst value of the system output. In the moment matching
method, the first-order moment (mean value) and the second-order moment (standard
deviation) of the system output are obtained and are used to determine the result-
ing probability distribution. The moment matching method is not accurate enough
for large input uncertainties. Also, low-order moments fail to accurately capture the
resulting probability distributions.

Monte Carlo simulation can also be used to generate the cumulative distribution
function and the probability density function of a system response based on data
sampling. However, this can be computationally prohibitive. Although some meth-
ods have been proposed to improve the computational efficiency of Monte Carlo
simulation, such as Latin Hypercube sampling (Walker 1996), the shooting Monte
Carlo approach (Brown and Sepulveda 1997), and the directional simulation tech-
nique (Ditlevsen et al. 1987), the required computational effort can still be excessive.
Models constructed via the Response Surface Methodology (RSM) somewhat allevi-
ate the computational expense involved in Monte Carlo simulation, but they tend to
overly smooth the response behavior, and miss local sensitivities and relatively finer
variations in the probabilistic analysis.

Reliability analysis-based approaches have emerged as a promising alternative for
uncertainty analysis. They are generally more accurate than sensitivity-based approx-
imations and RSM models, and are more efficient than sampling-based methods.
Reliability analysis methods employ analytical techniques to find a particular point in
the design space that can be related (at least approximately) to the probability of a
system response being less than some limit state value (see Melchers 1999). This point
is often referred to as the Most Probable Point. Note that in order to be able to solve
the Problem IR formulated in (3), we need to be able to determine the percentile
value, gα(x, y, P), say, for any given objective or constraint function g(x, y, P), and any
given distribution characteristics (vx, y, vP), for any specified probability level α. The
Most Probable Point approach provides the facility to compute this value.

To describe this methodology, consider any objective or constraint function, written
generically in terms of random design variables x = (x1, x2, . . . , xn), as g(x). (In Section
4, we describe a Kriging approach for deriving the form of g(x), given appropriate
sample data. Also, note that we are focusing here on the random design variables x for
simplicity in exposition; the random design parameter P can be treated similarly, and
the deterministic design variables could be assumed to be fixed at some suitable spe-
cific values.) Suppose that based on a selected design variable characteristic vx, each xi
has some known resultant distribution with a cumulative distribution function given
by Fi (xi), ∀ i = 1, . . . , n. Now, given g(x) with this known distribution for x (based on
a specified vx), and given a probability level α, we need to find the percentile value

c ≡ gα , where Prob[g(x) ≤ c] = α. (4)

The Most Probable Point method accomplishes this by estimating the cumulative
distribution of g as follows. First, it adopts a transformation from the x-space to the
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u-space of standard normal variates via the relationships

ui = �−1[Fi(xi)], ∀i = 1, . . . , n, (5)

where � represents the cumulative distribution function of a standard normal dis-
tribution. This transforms g(x) to a function of u, say ĝ(u). Then, (4) reduces to the
problem of finding c such that

Prob[ĝ(u) ≤ c] = α. (6)

Note that in case ĝ(u) is linear (see Fig. 1), then, given a value of c, if we compute

β = min
{‖u‖ : ĝ(u) = c

}
, (7)

we would have (see Du and Chen 2001)

α = Prob[ĝ(u) ≤ c] =
{

�(β) if α ≥ 0.5
1 − �(β) if α < 0.5

}
. (8)

The Most Probable Point method assumes that (8) is approximately true even when
ĝ is nonlinear. Moreover, note that we have the inverse situation at hand of finding c,
given α. Hence, based on (8), we first compute

β =
{

�−1(α) if α ≥ 0.5
�−1(1 − α) if α < 0.5

}
. (9)

Next, we find a Most Probable Point, given by uMPP, which solves the following
problem (based on (7) and (8)):

uMPP solves :
{

max{ĝ(u) : ‖u‖ = β}, if α ≥ 0.5
min{ĝ(u) : ‖u‖ = β}, if α < 0.5

}
. (10)

Finally, we compute

c = gα = ĝ(uMPP). (11)

Several optimization algorithms such as Sequential Quadratic Programming,
Sequential Linear Programming, and the Modified Method of Feasible Directions
(see Bazaraa et al. 1993); or specialized search procedures as described in Ditlevsen

Skirt Length

Skirt

Fig. 1 Transformation of input variables and percentile computation
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and Madsen (1996), Du and Chen (2001), and Yuon et al. (2003) can be used to solve
(10). However, these algorithms may not guarantee an optimal solution for noncon-
vex functions or might experience numerical convergence problems in general. We
recommend using the Most Probable Point of Inverse Reliability search algorithm
of Du et al. (2004), which has been shown to achieve robust convergence for non-
convex problems. This algorithm detects the Most Probable Point as the common
point lying on the tangent to the β-sphere and the contour of the function ĝ(u) in
the u-space by specifically exploiting the structure of this problem. At this point, the
vector connecting it to the origin is in the direction of the negative gradient of ĝ(u)(for
the maximization case in (10); the minimization case can be considered similarly). To
achieve this optimality condition, the search first adopts the steepest ascent direc-
tion. When this direction does not lead to an increased function value, a secondary
search process along the arc of the β-sphere is implemented. This latter step, which
specifically exploits the special structure of (10), imparts this procedure its relatively
superior convergence behavior, particularly for nonconvex functions. Therefore, this
search algorithm turns out to be robust for various types of functions.

We next describe techniques for deriving the form of g(u), given a set of responses
at a collection of sample data points.

4 Approximation methods used in the simulation–optimization framework

Engineering analyses often involve modeling system performance via techniques such
as finite element methods and computational fluid dynamics, both of which entail
heavy computational requirements. As a result, high fidelity analyses can become
computationally prohibitive, thereby limiting optimization and design space explora-
tions. Consequently, statistical approximation procedures are becoming increasingly
popular for constructing simplified surrogate approximations or metamodels of these
analytical codes. Simpson et al. (2002) identify a variety of methods that have been
developed to model and assess the effects of uncertainties by converting deterministic
problem formulations into probabilistic formulations.

The Response Surface Methodology (RSM) (see Myers 1995) is a very popular
choice for constructing metamodels, especially in the aerospace industry and in struc-
tural design. This method typically employs second-order polynomial models that are
fit using least-square regression techniques. While this is analytically convenient, its
accuracy is usually acceptable only over a relatively small region of the variable space,
particularly for complex functions or multiple objective approximations (see Barton
1992; Koch et al. 1999).

On the other hand, Kriging models show great promise for building accurate global
approximations over potentially large regions of interest. They are extremely flexible
because of the wide range of spatial correlation functions that can be chosen to build
the approximations, provided that sufficient sample data are available to capture the
trends in the system response. Furthermore, Kriging models can either honor the
data by providing an exact interpolation of the data, or smooth the data by providing
an inexact interpolation (see Cressie 1993; Montes 1994). Booker (1998) discusses
a 56 variable helicopter-rotor structural design problem, and demonstrates how the
flexibility of Kriging models permits such representations to be improved iteratively
in regions of interest through an intelligent intervention of a design expert. Osio
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and Amon (1996) also present a multi-stage Kriging strategy to design an embedded
electronic package involving five design variables.

The limited use of Kriging models in engineering applications may be attributed
to the lack of readily available software to fit Kriging models, or the additional effort
involved in using a Kriging model as compared to a simple RSM model. Kriging
models combine a global model plus localized departures via the functional form:

g(x) = h(x) + ξ(x) (12)

where,

• g(x) is the unknown function of interest;
• h(x) is an approximation (usually polynomial) function, and
• ξ(x) is the realization of a stochastic process with mean zero, variance σ 2, and

nonzero covariance.

The term h(x) provides a base model for the design space, and is similar to a poly-
nomial response surface. In many cases, however, h(x) is taken as simply a constant
value. ξ(x) creates localized deviations so that the Kriging model interpolates the ns
sample data points; however, noninterpolative Kriging models can also be created to
smooth noisy data. The covariance matrix of ξ(x) is given by

Cov [ξ(xi), ξ(xj)] = σ 2[R(xi, xj)] (13)

where, R(xi, xj) is the correlation function between any two of the ns sample data
points xi and xj. Let R be the correlation matrix having components R(xi, xj). Note
that R is an (ns × ns) symmetric matrix with ones along the diagonal. The correla-
tion function R(xi, xj) is specified by the user and a variety of such functions exist.
Often-times, a Gaussian correlation function of the following form is used.

R(xi, xj) = exp

[
−

n∑
k=1

θk

∣∣∣xi
k − xj

k

∣∣∣
2
]

(14)

where,

• n is the number of design variables;
• θk, k = 1, . . . , n, are the unknown correlation parameters used to fit the model,

and
• xi

k and xj
k are the kth components of the sample points xi and xj, respectively.

In some cases, using a single correlation parameter gives sufficiently good results; how-
ever, in our approach, we use a different θk for each design variable xk, k = 1, . . ., n.
The predicted estimates, g̃(x), of the response g(x) at untried values of x are then given
by (see Cressie 1993 for details)

g̃(x) = γ̃ + rT(x) R−1 (g − hγ̃ ) (15)

where,

• g is the column vector of length ns that contains the sample values of the response;
• h is a column vector of length ns that is filled with ones (this assumes that h(x) is

taken as a constant);
• rT(x) is the transpose of the correlation vector, of length ns between an untried x

and the sampled data points
{
x1, . . . , xns

}
given by

rT(x) = [R(x, x1), R(x, x2), . . . , R(x, xns)]; (16)
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• γ̃ is estimated as

γ̃ =
(

hT R−1 h
)−1

hT R−1 g. (17)

The estimate of the variance, σ̃ 2, between γ̃ h and g is then computed using the
following equation:

σ̃ 2 = [(g − h γ̃ )TR−1(g − h γ̃ )]/ns. (18)

The maximum likelihood estimates for the θk-parameters in (14) that are used to fit
this Kriging model are obtained by solving the following problem:

Maximize {−[ns ln (σ̃ 2) + ln ‖R‖]/2 : θ ≥ 0}, (19)

where θ = (θ1, . . . , θn), and where both σ̃ 2and ‖R‖ (the norm of the matrix R), are
functions of θ . While any value of θ creates an interpolative Kriging model, the ideal
Kriging model is found by solving the nonlinear optimization problem given by (19).
In our approach, we employed a simulated annealing-based algorithm to find the max-
imum likelihood estimates for the correlation parameters θ via (19). The surrogate
model used for g was then given by (15).

5 Illustrative application: The design of combustion engines to reduce piston slap
under uncertainty

In automobile vehicle design, total vehicle customer satisfaction is strongly linked
to the level of satisfaction a customer has with the vehicle’s engine. One of the key
elements of vehicle satisfaction is the Noise, Vibration, and Harshness characteristics
of the vehicle and the engine. Piston slap is an unwanted engine noise that is the result
of the secondary motion of a piston, i.e., the departure of the piston from the nominal
motion prescribed by the slider crank mechanism. This secondary motion is caused
by a combination of transient forces and moments acting on the piston during engine
operation and the presence of clearances between the piston and the cylinder liner.
This combination results in both a lateral movement of the piston within the cylinder
and a rotation of the piston about the piston pin, and it causes the piston to impact
the cylinder wall at regular intervals. These impacts result in an objectionable engine
noise known as piston slap.

Our formulation of the engine design problem described below is based on physical
test data obtained from Ford Motor Company (this data pertains to some 21 operat-
ing points measured at 1200 RPM). There are four random design variables (control
factors) and two random design parameters (noise factors) in this design. The four
random design variables are designated as follows.

1. Skirt Length (x1): The piston skirt is the area along the circumference of the
piston, below the piston rings, which carries the inertial side loads from the pis-
ton. Figure 2 illustrates this region and depicts the segment that defines the skirt
length.

2. Skirt Profile (x2): There is an inherent asymmetry in the piston assembly that
gives rise to a non-flat surface as assessed vertically between the top and bottom
of the skirt. The control of this profile is managed by specifying an associated
dimensionless integer variable that takes on values 1, 2, and 3, depending on the
particular skirt profile available through the manufacturing process.
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u2 u-space

u1

uMPP(    > 0.5 case)
ĝ(u) ≤ c

ĝ(u) = c
Normal density function

uMPP(    < 0.5 case)

β

α

α

Fig. 2 Schematic illustration of piston

3. Skirt Ovality (x3): The asymmetric piston assembly leads to non-uniform tem-
perature distortions and asymmetrical expansions. To ensure uniform, minimal
clearances under all operating conditions, the piston is accurately machined to a
non-circular or oval shape. This machining is also controlled by the specification
of a dimensionless integer variable, which takes on values 1, 2, and 3, depending
on the particular shape available through the manufacturing process.

4. Pin Offset (x4): In a piston assembly, the center of the piston pin is always offset
from the center of the piston. This offset is provided since it somewhat reduces the
effect of the inertial side loads carried by the piston skirt from the forces acting
on the piston.

The two noise factors (design parameters) are delineated as follows.

1. Clearances between the Piston and the Cylinder Liner (P1): The thermal coeffi-
cient of expansion of the piston is always greater than that of the cylinder bore.
Sufficient clearance between the piston and the cylinder liner is necessary to
prevent the piston from seizing when operating at its maximum possible service
temperature.

2. Location of Peak Pressure (P2): The location of peak pressure refers to the position
of the piston within the cylinder, measured in degrees, after it crosses the top dead
center.

Note that no deterministic design variables exist in this problem. The random
design variables or control factors in the problem are governed by their mean values,
(or prescribed index values in the case of the skirt profile and skirt ovality variables).
These are designated as follows: v1, mean skirt length (mm); v2, skirt profile index
(integer value, dimensionless); v3, skirt ovality index (integer value, dimensionless),
and v4, mean piston pin offset (mm).

Additionally, the random design parameters in the problem are specified via their
mean values, which are designated as follows: v5, mean clearance between the piston
and the cylinder liner (μm), and v6, mean peak pressure location (degrees after cross-
ing the top dead center).
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The robust design objective is to minimize the noise (Gobj) and its variation. The
friction (G1) is considered via a reliability constraint, which requires that the prob-
ability of the friction G1 being lesser than 7 N should be at least 0.99. Using the
proposed Inverse Reliability Strategy (percentile formulation for both objective and
constraints), we can represent the piston slap problem (PSP) in the following generic
form:

(PSP) Minimize w1
μGobj

μ∗
Gobj

+ w2

(
�Gobj

)0.95
0.05(

�G∗
obj

)0.95

0.05

(20a)

subject to G0.99
1 − 7 ≤ 0 (20b)

lj ≤ νj ≤ uj, ∀ j = 1, . . . , 4, with v2 and v3 integer-valued (20c)

vj pre-selected in [lj, uj], for j = 5, 6, (20d)

where,

• μGobj is the mean value of the piston noise;

• (
�Gobj

)0.95
0.05 is the percentile variation of the piston noise;

• νj are the distribution characteristics for the random design variables for j =
1, . . ., 4, and for the random design parameters for j = 5, 6;

• (lj, uj), j = 1, . . ., 6, are specified bounds on the respective distribution charac-
teristics for the design variables and parameters vj, ∀j = 1, . . ., 6, as displayed in
Table 1;

• w1 and w2 are relative weighting factors for the two objective terms, and

• μ∗
Gobj

and
(
�G∗

obj

)0.95

0.05
are ideal solution values that are used to normalize the

two respective terms in the objective function, and are respectively obtained by
separately minimizing μGobj and

(
�Gobj

)0.95
0.05 subject to (20 b, c, d).

6 Proposed optimization framework and its application to solve the piston slap
problem

The proposed overall approach for solving the general Inverse Reliability formulation
(3) (where some composite function for the multiple objectives is employed) adopts
the following steps:

Step 1. Derive surrogate functional forms for the performance measures required
to model Problem IR (whenever not available) by applying the Gaussian
Kriging technique described in Section 4 using an available set of sample

Table 1 Bounds on the
distribution characteristics for
the Random Design Variables
and Design Parameters.

Variable νj Lower Bound lj Upper Bound uj

v1 (continuous) 21 25
v2 (discrete) 1 3
v3 (discrete) 1 3
v4 (continuous) 0.5 1.3
v5 (continuous) 15 85
v6 (continuous) 12 18
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data points and corresponding response evaluations. (Note that these data
points pertain to particular realizations of (x, y, P) based on physical tests
conducted on available specimen designs.)

Step 2. Evaluate the percentile performance characteristics in the problem formula-
tion via the Most Probable Point of Inverse Reliability (see Du et al. (2004))
search algorithm as discussed in Section 3, for various design variable distri-
bution character settings (i.e., values of (vx, y, vP)), chosen via an appropriate
experimental design. A Fractional Factorial Design (see Hicks 1973) can be
used for this purpose.

Step 3. Using the percentile evaluations in Step 2, apply the Response Surface Meth-
odology (see Myers 1995) to generate a polynomial programming approxi-
mation for each percentile-based term in the objective and constraint func-
tions of Problem IR. Let the resulting polynomial programming nonconvex
optimization problem, of minimizing a polynomial objective function sub-
ject to polynomial constraints based on the foregoing approximations, be
designated as Problem PPA.

Step 4. Solve Problem PPA to global optimality using, for example, the Reformula-
tion–Linearization Technique (RLT) of Sherali and Tuncbilek (1992), or the
software package BARON developed by Sahinidis (1996). Alternatively, for
more complex problems, one of the following two heuristic approaches can
be adopted at this step.

(a) Heuristic MINLP: Apply a local search-based (mixed-integer) nonlin-
ear programming (MINLP) procedure (see Kocis and Grossmann 1989
or Viswanathan and Grossmann (1990), for example) to Problem PPA.

(b) Heuristic RLT-LP-MINLP: Derive the RLT-based, higher dimensional,
linear programming relaxation RLT-LP of Problem PPA (see Sherali
and Tuncbilek 1992). Solve RLT-LP, and then apply a MINLP algorithm
to refine the resulting solution.

We now apply the foregoing procedure to the piston slap problem PSP described in
Section 5 (see Equation (20)). A flow-chart for the proposed algorithmic framework
outlined in steps 1 through 4 above, as translated for this problem, is depicted in Fig. 3.
For the purpose of illustration, the mean values for the random design parameters P1
and P2 were selected as v5 = 50 and v6 = 17, respectively. Applying Steps 1–3, the
particular forms of the polynomial approximations for the mean and for the percentile
difference related to the engine noise, which constitute the objective function, and for
the mean of the engine friction measure, which constitutes the constraint function,
were obtained as specified below by (21), (22), and (23), respectively.

μGobj = 2.4635v1 + 1.6963v2 − 6.7356v3 + 6.7356v4 − 0.0524v2
1 − 0.1684v1v2

+ 0.0408v1v3 − 0.3907v1v4 + 0.5463v2
2 − 0.0019v2v3 − 0.1522v2v4

+ 0.7707v2
3 + 1.7499v3v4 − 1.2979v2

4 + 38.3897. (21)
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Input:  Physical test data collected at 1200 RPM
pertaining to measuring the piston  noise and piston
friction for specimens having various realizations of

(x1,x2,x3,x4,P1,P2).

Construct Gaussian Kriging
approximations for the

piston noise and
piston friction functions.

0.95
0.99
10.05

Evaluate           , , and forG objobj
G Gμ Δ

different settings of v1,v2,v3, and v4

according to a design of experiments.
(Note that v5 and v6 are fixed at selected values.)

Construct RSM-based polynomial
approximations for the objective and

constraint terms defining Problem PSP
in (20), and hence derive the polynomial

optimization program, Problem PPA.

Solve PPA to
global optimality

using RLT/BARON.

Solve PPA using
Heuristic-MINLP.

Solve PPA
using Heuristic

RLT-LP-MINLP.

Fig. 3 Flow-chart for the Proposed Algorithm applied to Problem PSP

(
�Gobj

)0.95
0.05 = −2.9556v1 − 1.8282v2 − 5.5577v3 + 5.1907v4 + 0.0668v2

1

+ 0.0918v1v2 + 0.2072v1v3 − 0.2783v1v4 + 0.0161v2
2

+ 0.1326v2v3 − 0.2375v2v4 + 0.1318v2
3 − 0.1169v3v4

− 0.0716v2
4 + 37.1626. (22)

G0.99
1 = 0.3324v1 + 6.9473v2 − 11.2527v3 + 4.6857v4 − 0.000928v2

1

− 0.3195v1v2 + 0.4279v1v3 − 0.5993v1v4 + 0.0791v2
2

− 0.2514v2v3 + 0.8699v2v4 + 0.4810v2
3 + 0.1797v3v4

+ 3.3915v2
4 + 6.6784. (23)
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The goodness-of-fit statistics in terms of the R2-values (see Hines and Montgomery
1972), for these functions are displayed in Table 2, and reveal a relatively high level
of fidelity.

Table 3 outlines the results obtained by using RLT to solve the resulting poly-
nomial program PPA, which is given by (20), using the approximations (21)–(23).
Note that the first two rows of Table 3 relate to respectively minimizing μ∗

Gobj
and

(�G∗
obj)

0.95
0.05 for defining the objective function (20a) for Problem PSP. The last row

then provides the results for this latter problem. The columns for RLT-LP pertain to
solving the initial LP relaxation generated by RLT using CPLEX Version 9.0, and
those for RLT-PPA refer to solving PPA to optimality using RLT (identical results
were obtained using BARON). We also tried solving PPA using Heuristic MINLP
as delineated in Step 4(a) by applying DICOPT (see Viswanathan and Grossman
1990; Kocis and Grossmann 1989) in concert with the General Algebraic Modeling
System (GAMS), Version 21.3, developed by the GAMS Development Corpora-
tion (see http://www.gams.com), using the starting solution specified by (v1, v2, v3,
v4) = (25, 2, 2, 1). In addition, we applied the Heuristic RLT-LP-MINLP as described
in Step 4 (b). Both these runs produced the same solution as that given in Table 3
for RLT-PPA, indicating that the heuristic local search methods effectively handled
this problem instance. The following are the performance characteristics achieved at
the optimal solution: Noise, Mean = 56.5913; Noise, Percentile Difference = 2.3858;
Friction, 99 Percentile = 6.99998407.

The mean piston noise and friction values identified by this algorithmic frame-
work are lesser than the current design used at Ford Motor Company, indicating the
practical usefulness of using this approach. Actual manufacturing implications and
implementation issues for applying this solution to the piston design process require
further considerations.

Table 2 Goodness-of-Fit
Statistics for the Polynomial
Programming Approximations

Term R2 Value

μGobj
0.999614

(
�Gobj

)0.95

0.05
0.979304

G0.99
1 0.999515

Table 3 Solution for PPA using the RLT algorithm

Solution RLT-LP RLT-PPA
Step

(ν*) Values Objective Iters. Time (ν*) Values Objective Iters. Time
Value (sec) Value (sec)

μ∗
Gobj

{25, 2, 2, 1.3} 52.1053 20 0.001 {25, 2, 2, 1} 54.5567 1 0.001
(
�G∗

obj

)0.95

0.05
{23, 2, 2, 1.3} 0.8755 15 0.002 {24.5628, 1, 1, 1.3} 2.3859 1 0.002

Problem PSP {23, 2, 2, 1.3} 1.0222 15 0.001 {24.5628, 1, 1, 1.3} 1.0129 1 0.001
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7 Conclusions and recommendations for future research

In this paper, we have presented an optimization framework for designing under
uncertainty employing the Inverse Reliability Strategy that uses percentile perfor-
mance to assess both robustness objectives and reliability constraints. Our overall
approach prescribes a novel composition of several analytical tools: approximation
techniques based on Gaussian Kriging models, percentile evaluations using the Most
Probable Point concept, polynomial approximations for percentile functions using
the Response Surface Methodology, and global optimization procedures based on the
RLT in order to solve the resulting nonconvex polynomial programming approximat-
ing problem. This framework is generally applicable to engineering design problems
involving nonconvex objective functions and constraints that are defined in terms of
random variables and parameters following any continuous or discrete distributions.
We have illustrated the proposed approach by applying this to the problem of reducing
piston slap, an undesirable engine noise due to piston secondary motion.

As a further refinement of the proposed algorithm, note that the described proce-
dure involves solving a single polynomial approximation problem constructed over
the entire design space to global optimality. This approach can be further improved
by employing a sequence of polynomial programming approximations to the problem
coordinated via branch-and-bound techniques with specially designed node-partition-
ing schemes (see Sherali and Ganesan (2003) for a conceptually related methodology
for solving black-box optimization problems). We did not pursue this for the present
problem due to the limited amount of physical test data that was available, which
precluded the derivation of Kriging approximations over partitioned subspaces in the
design space. For example, in the case of the piston slap problem studied herein, the
piston noise and friction measurement data obtained for the various design variable
realizations involved time-consuming, expensive physical testing at a facility off-site
to Ford Motor Company. The generation of additional data over subspaces in an
interactive fashion would be prohibitive, time-and expense-wise, and would render
this approach impractical. Nonetheless, given a sufficient cache of experimental data
points, it would be worthwhile to automate this framework by constructing polyno-
mial programming approximations over different hyperrectangles in the design space
using the available data points, within the context of a partitioning approach. We
propose investigating this, as well as other global optimization approaches, for solving
such probabilistic design problems to (near-) global optimality for future research.
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